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A bst Fact 

In this paper we consider the ARTl neural network architecture introduced by Carpen- 
ter and Grossberg. In their original paper, Carpenter and Grossberg made the following 
conjecture: In the fast learning case, if the F2 layer in ARTl has at least N nodes, then 
each member of a list of N input patterns presented cyclically at the F1 layer of ARTl will 
have direct access to an F2 layer node after at most N list presentations. In this paper, we 
demonstrate that the conjecture is not valid for certain large L values, where L is a network 
parameter associated with the adaptation of the bottom-up traces in ART1. It is worth 
noting that previous work has shown the conjecture to be true for small L values. 

1 Introduction 
A neural network architecture that can be used to learn recognition categories was derived 
and analyzed by Carpenter and Grossberg [l]. This architecture was termed ARTl in refer- 
ence to the adaptive resonance theory introduced by Grossberg [2]. The ARTl architecture 
self-organizes and self-stabilizes its recognition codes in response to presentations with ar- 
bitrary ordering of arbitrarily many and arbitrarily complex binary (0,l) input patterns. 
We assume that the reader is familiar with the ARTl architecture introduced by Carpenter 
and Grossberg (1987), as well as the terminology and theorems contained therein. 

Carpenter and Grossberg [l] specified in the form of a conjecture the number of list 
presentations and F2 layer nodes required by ARTl to learn and recognize a list of binary 
input patterns through direct access. Carpenter [3] refers to this conjecture as the N-N-N 
Conjecture. It is formally stated below. 
The N-N-N Conjecture: 
In the fast learning case, if the F2 layer of ARTl has at least N nodes, each member of a 
list of N input patterns, which is cyclically pmsented at the F1 layer of ART1, will have 
direct access to an F2 layer node after at most N list presentations. 

Georgiopoulos et al [4] proved the following result when the L parameter is small. Note 
that L is a parameter associated with the adaptation of the bottom-up traces in ARTl. 
Result 1 : 
In the fast learning case, i f L  is small and if the F2 layer of ARTl has at least N nodes, each 
member of a list of N binary input patterns, which is cyclically presented at the Fl layer of 
ART1, will have direct access to an F2 layer node after at most m list presentations, where 
m is the number of distinct size patterns in the input list; the size of a pattern is defined to 
be the number of its components that are one. 

The smallness of the parameter L that makes Result 1 valid is dictated by the largest 
size patterh in the input list. In particular, L has to be less than or equal to 1 -+ 
where 11-1 denotes the size of the largest pattern in the input list. The validity of Result 
1 for s m d  L values implies the validity of the N-N-N Conjecture for small L values. 
Note though, that the N-N-N Conjecture does not impose any constraints on the range 
of the values for the parameter L beyond the ones imposed in Section 18 (i.e., L > 1) of 
Carpenter and Grossberg [l]. In this paper we demonstrate, by presenting two carefully 
chosen examples, that there exist large L values (i.e., L E (1 + (I-l-l, 00)) for which the 
N-N-N Conjecture is not true. Obviously, for these L values, Result 1 is not true either. 
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2 Preliminaries 
We denote a node in the F1 layer of ARTl by vi ( i  = 1,2,. . . , M) and a node in the F2 
layer of ARTl by vj ( j  = M + 1, M t 2,. . .). Every node in the F1 layer is connected via 
bottom up traces, denoted by zij, to all of the nodes in the F2 layer. Furthermore, every 
node in the F2 layer is connected via top-down truces, denoted by zjj, to all of the nodes in 
the E’’ layer. Input patterns are presented at the F !  layer of ART1. Initial values of the 
bottom-up and top-down traces, denoted by zij(0) and zji(O), correspond to the values of 
the bottom-up and top-down traces prior to the presentation of any input pattern at the 
F1 layer of ART1. The Zij(0)’S are chosen according to the rules specified in Section 18 of 
Carpenter and Grossberg ([l]), while the zjj(0)’s can be chosen, without loss of generality, 
to be equal to one. 

The vector whose components are the top down traces emanating from a node v j  in the 
F2 layer and converging to the nodes ‘U; ( i  = 1,2,. . . M) in the F’ layer is called template 
Vj (i.e., vj = (zj?, !j?, . . . ZjM)). Since this paper concerns the fast learning case, and since 
we take all the initial values of the top-down traces to be equal to one, every template 
Vj ( j  = M t 1, M + 2,. . .) can be thought of as a binary (0,l) vector. We define 111 and 
lVjl to be the size of the binary input pattern I and the binary template Vj, respectively. 
As mentioned in the introduction, the size of a binary vector is equal to the number of 
its components that have value one. Furthermore, if I is a pattern in the input list and 
Vj is a template in the F2 layer, we define I n  Vj to be the binary vector with ones only 
at components where both the I and I$ components are one, and zeroes at all the other 
components. 

An input pattern I is said to have direct access to an F2 node w j  if presentation of I 
leads at once to activation of w j ,  and ‘Uj  codes I on that trial. An active F2 node Vj is said 
to code an input pattern I on a given trial if no reset of vj occurs after the template Vj is 
read out at the F1 layer. Reset of an active F2 node wj, during the presentation of an input 
pattern I, occurs if [ I n  vjl- 1Il-l < p, where p is a parameter in the ARTl network, called 
vigilance. 

A node in the F2 layer is called committed if it has already coded a pattern from the 
input list; otherwise it is called uncommitted. The templates corresponding to committed 
F2 nodes are called learned templates, while the templates corresponding to  uncommitted 
F2 nodes are called uncommitted templates. We say that learning in ARTl self-stabilizes 
in n list presentations, if subsequent presentations of the input list (i.e., list presentations 
n t 1, n t 2, n t 3,. . .) can neither modify already existing learned templates, nor create 
new learned templates by committing uncommitted templates. 

3 The N-N-N Conjecture 
The parameters that we have at our disposal to construct examples that violate the N-N- 
N Conjecture are: N, M, p, L, and Mu. N denotes the number of patterns in the input 
list, M denotes the number of nodes at the F1 layer, p is the vigilance parameter, and L is 
a network parameter associated with the adaptation of bottom-up traces. The parameter 
Mu, in conjunction with L, restricts the range of the initial values for the bottom-up traces. 
In particular, 

L 
O < zij(O) < 

L - l + M u ’  
where Mu is a real number greater than or equal to M. The above inequality when Mu = M 
is referred to by Carpenter and Grossberg ([l]) as the direct access inequality. 
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The key parameter that allows us to construct examples that violate the N-N-N Con- 
jecture is L. This is obvious from the discussion in Section 1, where we stated that the 
N-N-N Conjecture is valid for small L values (see the discussion after Result 1). In this 
section we will show that the N-N-N Conjecture is not true for large L values. First let 
us state two additional conjectures, that are related with the N-N-N Conjecture. 
The N-N-00 Coqjecture: 
In the fast learning case, if the F2 layer of ARTl has at least N nodes, each member of a 
list of N input patterns, which is presented cyclically at the F1 layer of ARTl, will have 
d i m t  access to an F2 layer node after finitely many (< CQ) list presentations. 
The N-ao-N Conjecture: 
In the fast leaming case, if the F2 layer of ARTl has infinitely many nodes, each member 
of a list of N input pattems, which is presented cyclically at the F1 layer of ARTl, will 
have d i m t  access to an F2 layer node after at most N list presentations. 

The N-N-ao and the N-oo-N Conjectures are weaker than the N-N-N Conjecture in 
the sense that if either one of them is not true, then the N-N-N Conjecture is not true. 
Examples 1 and 2, presented below, violate the N-N-oo and the N-oo-N Conjectures, 
respectively; consequently they violate the N-N-N Conjecture. In these examples we 
assume that the initial bottom-up traces are chosen to satisfy inequality (1). For ease of 
exposition, we also assume that the competition amongst uncommitted nodes in the F2 
layer always results in the node labeled with the smallest index being chosen as the winner. 

3.1 Example 1 
The input list in this example consists of the following patterns: 

The above input patterns are presented in the order I I I ~ I ~ .  The order of pattern 
presentation is kept fixed from list presentation to list presentation. The number of nodes M 
in the F1 layer, the vigilance parameter p, the parameter L, and the parameter Mu are equal 
to 8,0.4, 5.5 and 12.0, respectively. In this example, the F2 layer has three nodes, denoted 
vg, q o  and w11. Note that Example 1 satisfies the assumptions of the N-N-oo Conjecture 
for N = 3. In Figure 1, the template formation corresponding to this example is depicted 
for the first two list presentations. In the same figure, the input patterns and templates 
formed after the first two list presentations are depicted as sequences of open circles ( 0 )  

and full circles (0 ) .  An open circle designates a zero, while a full circle designates a one. In 
Figure 1 only the templates corresponding to committed F2 nodes (i.e., learned templates) 
are shown. The template formation shown in Figure 1 can be easily verified for the input 
patterns and the network parameters (i.e., M, p, L, and Mu) chosen in Example 1. Observe 
that in Example 1, learning self-stabilizes in two list presentations. After the second list 
presentation (i.e., in list presentations 3,4,5,. . .) pattern I1 has direct access to node w11, 
pattern I2 has direct access to node w10, while pattern I3 does not have direct access to any 
node in the F' layer. Actually, after the second list presentation, pattern I3 activates nodes 
v10, vs and w11 in that order, and it resets each one of them. 

Example 1 demonstrates that the N-N-oo Conjecture is not valid. As a result, the 
N-N-N Conjecture is not valid either. The N-N-oo and N-N-N Conjectures fail in 
Example 1 because there are not enough nodes in the Fz layer to code every input pattern. 
Note that if the F2 layer in this example had one more node (i.e., node 2)12), then pattern 
I3 would have activated this node in the second list presentation and would have been 
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coded by this node. Furthermore, in the case where the F2 layer has four nodes, learning 
self-stabilizes in two list presentations, and after the second list presentation each one of 
the input patterns I1,& and I3 has direct access to a node in the F2 layer (i.e., pattern I1 
to node ~ 1 1 ,  pattern I2 to node v10 and pattern I3 to node V I Z ) .  

It seems from Example 1 that if we have enough nodes in the F2 layer of ARTl, then at 
most N list presentations are enough to guarantee direct access to an F2 node for each of the 
N patterns in the input list. Example 2, by violating the N m - N  Conjecture, disputes the 
validity of the above statement, and consequently the validity of the N-N-N Conjecture. 

3.2 Example 2 

The input list in this example consists of the following patterns: 

11 = 11111111111100 
I2 = 00000000010111 
13 = 00000000101100. 

The input patterns are presented in the order IlIzI3. The order of pattern presentation 
is kept fixed from list presentation to list presentation. The number of nodes M in the F1 
layer, the vigilance parameter p, the parameter L, and the parameter Mu are equal to 14, 
0.3, 6 and 30.0, respectively. In this example, the F2 layer of ARTl has infinitely many 
nodes. These nodes are denoted ~ 1 5 ,  V 1 6 ,  ~ 1 7 ,  v18, ... Note that Example 2 satisfies the 
assumptions of the N-oo-N Conjecture for N = 3. In Figure 2, the template formation 
corresponding to this example is depicted for the first four list presentations. In the same 
figure, the input patterns and templates formed after the first four list presentations are 
again depicted as sequences of open and full circles, and only the templates corresponding 
to committed F2 nodes (i.e., learned templates) are shown. The template formation shown 
in Figure 2 can be easily verified for the input patterns and the network parameters (i.e., 
M,p, L, and Mu) chosen in Example 2. 

We see, by observing Figure 2,  that pattern I1 in the fourth list presentation does not 
have direct access to any node in the F2 layer. In particular, pattern I1 in the fourth list 
presentation initially activates and resets node ~ 1 7 ,  then it might activate and reset nodes 
U16 and ~ 1 5  and finally it activates and is coded by node 2)1& 

Example 2 demonstrates that the N-oo-N Conjecture is not valid. Consequently, the 
N-N-N Conjecture is not valid either. The reason that the N-oo-N Conjecture fails 
is that more than N list presentations are required before all patterns have direct access 
to an F2 node. The reason that the N-N-N Conjecture fails is that more than N list 
presentations, and more than N nodes in the F2 layer are required for all patterns to have 
direct access to an F2 node. It is worth noting that in Example 2 learning self-stabilizes in 
four list presentations, and after the fourth list presentation each one of the input patterns 
has direct access to a node in the F2 layer (i.e., pattern I1 to node 2)18, pattern I2 to node 
016 and pattern 13 to node ~ 1 7 ) .  

4 Conclusions 
In the previous sections we presented Examples 1 and 2 that violated the N-N-N Con- 
jecture for large L values. In particular, Example 1 violated the N-N-oo and N-N-N 
Conjectures, while Example 2 violated the N-oo-N, the N-N-oo, and the N-N-N Con- 
jectures. It is worth pointing out that we could not devise an example that violates the 
N-CO-N conjecture without violating at the same time the N-N-oo Conjecture. The 
purpose of of Example 1 was to demonstrate that there are cases in which the N-N-oo 
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Conjecture is violated without violating the N-oo-N Conjecture. Let us now present some 
final conclusions regarding properties of learning in ARTl which are immediate byproducts 
of Examples 1 and 2. 
Conclusion 1 : 
In the fast learning case and for large L values, i f  ARTl is cyclically presented with an 
arbitmy list of bina y input patterns, then after learning has self-stabilized there may exist 
committed nodes that are not directly accessed by any pattern in the input list. 
Conclusion 2: 
In the fast learning case and for large L values, i f  ARTl is cyclically presented with an 
arbitmrg list of bina y input patterns, then after learning has self-stabilized the number of 
learned templates may be greater than the number of patterns in the input list. 

Conclusion 1 is true for Examples 1 and 2 (in Example 1 the committed node vg, 
after learning has self-stabilized, is not directly accessed by any pattern in the input list). 
Conclusion 2 is true for Example 2 (in Example 2, after learning has self-stabilized, there are 
four learned templates and only three input patterns). It is worth noting that Conclusion 
1 is also true for small L values (see [4]). On the contrary, Conclusion 2 is not true for 
small L values . For small L values, after learning has self-stabilized, the number of learned 
templates is always smaller than or equal to the number of patterns in the input list (for a 
proof see [4]). 
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